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ECCENTFUCALLY STIFFENED SHALLOW SHELLS 

OFDOUBLECURVATURE* 

By John A. McElman 
Langley Research Center 

SUMMARY 

Equilibrium equations and boundary conditions are derived which govern the 
buckling and vibration of eccentrically stiffened shallow shells of double curvature. The 
equations are then solved for the case of simple-support boundary conditions and results 
are presented which illustrate the effects of eccentric stiffening on the dynamic and 
buckling characteristics of shells of positive and negative Gaussian curvature. Results 
show that eccentric stiffening can have a significant effect on the natural frequencies and 
buckling loads of such shells. 

INTRODUCTION 

Shells of double curvature have become common structural members in aerospace 
vehicles. The understanding of the effects of stiffening on the behavior of such shells has 
grown in importance with the increasing need for precision in the design of lightweight 
structures. The effects of stiffener eccentricities on the buckling and vibration character
is t ics  of circular cylinders and flat plates have been studied analytically in references 1 
to 7. A typical stiffened cylinder is shown in figure 1. Experimental results of refer
ences 3 and 8 show that for some configurations a circular cylindrical shell stiffened with 
stringers attached only to its external surface can car ry  more than twice as much load in  
axial compression as its internally stiffened counterpart. 

In the present study, nonlinear equilibrium equations and boundary conditions are 
derived for eccentrically stiffened shells of double curvature. The types of doubly curved 
shells considered are shown in figure 2. These particular shell configurations are chosen 
because exact closed-form solutions can be obtained which exhibit typical eccentricity 
effects for shells of double curvature. The derivation is accomplished by defining non-

The potential energy oflinear strain-displacement relations for  the shell and stiffeners. 

*The information presented herein is based in part  upon a thesis offered in  partial 
fulfillment of the requirements for  the degree of Doctor of Philosophy in  Engineering 
Mechanics, Virginia Polytechnic Institute, Blacksburg, Virginia, June 1966. 



the system is then formulated and the nonlinear equilibrium equations and boundary con
ditions a r e  obtained by the application of the principle of minimum potential energy. The 
nonlinear equations are subsequently linearized to obtain equations which govern the 
small-amplitude vibrations of prestressed eccentrically stiffened shells. Closed-form 
solutions to these equations are presented for a membranelike pres t ress  state and simple-
support boundary conditions. If the natural frequency is assumed to be zero, the linear 
equations and the solution apply to buckling problems. 

Because of the large number of parameters involved, presentation of results of a 
general nature would be impractical. Results a r e  included, however, for  the f ree  vibra
tion of specific shell configurations to demonstrate the effects of eccentric stiffening on 
vibration problems. Data are also presented for the buckling in  axial compression and 
under hydrostatic pressure for specific shell configurations. These findings illustrate 
typical effects which exist in eccentrically stiffened shells of double curvature. 

SYMBOLS 

The units used for the physical quantities defined in this paper a r e  given in both the 
U.S. Customary Units and the International System of Units (SI) (ref. 9). Factors relating 
these two systems a r e  presented in  appendix A. 

A cross-sectional a rea  of stiffener 

a length of shell 

C1,C2,C3,C4 constants defined in appendix B 

Et3D flexural stiffness of isotropic shell wall, mlJ.2) 
d stringer spacing 

E Young's modulus 

e distance from shell middle surface to line on which zx acts 

zr,zs nondimensional eccentricity parameters 

f frequency, 	-w 
277 

G shear modulus 
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I moment of inertia of stiffener about an axis through its centroid parallel to  
the shell middle surface 

I O  moment of inertia of stiffener about middle surface of shell 

J torsional constant for stiffener 

2 ring spacing 

M mass per unit area of stiffened shell + ps 
AS 

+ pr 8 
Mx,My,Mxy 9 Myx moment resultants 

P 

R1 

R2 

-
R 

-
S 


t 

integers 

s t r e s s  resultants 

externally applied compressive load resultant in  x-direction 

external pressure load 

radius of shell equator (fig. 2) 

radius of curvature (fig. 2) 

ErArnondimensional parameter, -
Et2 

ESASnondimensional par ameter, -
Etd 

thickness of shell 

tangential displacements and normal displacement of shell middle surf ace 
in x-, y-, and z-directions, respectively 

displacement amplitudes 

rectangular Cartesian coordinates 

a2 - p2)1/2curvature parameter, -(I
Rl t  
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, ....... ....- .--

I-

Z distance from middle surface of shell to centroid of stiffener 


SB wavelength parameters 


r defined by equation (33) 


eX,ey,yXy normal and shearing strains at shell middle surface 


YT,Y X ~ T  total normal and shearing strains
E X T ~ ~  

A,Ao,Ar,As,Ars eccentricity parameters defined by equations (34) 

1 2 3 x4 defined by equations (B10) 

I-1 Poisson's ratio 

V curvature parameter, 

rI potential energy 

P mass  density 

w circular frequency 

Subscripts: 

A prestress  state 

R1
-
R2 


B small changes away from prestress  state 


i inertial 


L load 


r stiffening in y-direction (rings) 


S stiffening in x-direction (stringers) 
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sh shell 

T total 

A subscript preceded by a comma indicates partial differentiation'with respect to 
the subscript. 

ANALYSIS 

In this section, the nonlinear equilibrium equations and boundary conditions for the 
shallow shells of double curvature illustrated in  figure 2 a r e  derived. Solutions are 
obtained for  the case of simple-support boundary condition. 

Energy Formulation 

Strain-displacement relations.- The strain-displacement relations for the shells of 
double curvature a r e  derived in  reference 10 and a r e  as follows: 

YxyT - u,y + v,x + w, 'y - 2zw,xyJ 

where u and v can be identified as the tangential displacements of the middle sur
face of the shallow shell and w can be regarded as the normal displacement. In equa
tions (1) and in subsequent equations, a double sign is used; the upper sign applies to 
shells with positive Gaussian curvature and the lower sign applies to shells with negative 
Gaussian curvature. 

Strain energy of isotropic shell.- The strain energy of the unstiffened thin-wall 
isotropic shell is 

Substitution of equations (1)into equation (2) and integration with respect to z yields the 
following expression for shell strain energy: 
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where 

and D = Et3 is the flexural stiffness of the shell wall. 
12(1 - p2) 

Strain energy of stiffeners.- The s t ra in  energy of the stiffeners is derived by using 
the fact that the displacements in the shell and stiffeners are equal at the point of attach
ment. Integration with respect to  the thickness coordinate yields t e rms  whose signs 
depend upon whether the st iffeners are attached to the inner o r  the outer surface of the 
shell. The stiffeners are assumed to  be in a state of uniaxial stress, and stiffener 
twisting is accounted for in  an approximate manner. For configurations in which both 
rings and stringers are attached to the same surface of the shell, the effects of joints in 
the stiffener framework are ignored. 

The total strain energy of K stringers in the x-direction is written as 

K 

2E GsJs w,& dx)kdAS dx -
2 

soaUS = 2 (J:sAs 
k=1 

where the f i r s t  term within the parentheses is the strain energy of bending and extension 
in the stiffener, and the second te rm is the strain energy of twisting of the stiffener. This 
latter te rm results from assuming that the stiffener twists in a fashion such that its angle 
of twist is equal to the local angle of twist of the shell. The quantity dAs is an element 
of the cross-sectional area of the stiffener and the quantity GsJs is the twisting stiff
ness  of the stringer section. After substitution from equations (1) and (4),the first te rm 
inside the parentheses can be written as 

Inspection of these te rms  reveals that the first integral inside the parentheses is the area 
As of the stiffener c ross  section, the second integral is the first moment of the area 
ZsAs where zs is the distance from the middle surface of the isotropic shell (z = 0) to 
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the centroid of the stiffener c ross  section, and the third integral is the moment of'inertia 
of the stringer Io, about z =.O. Note that the centroid distance ZS is positive for 
external stiffeners and negative for internal stiffeners. If the stiffener spacing d at the 
equator is sufficiently small, the effects of the stiffeners can be averaged or "smeared 
out," and the finite sum in equation (5) can be replaced by an integral. Equation (5) then 
becomes 

The strain energy of stiffening in  the y-direction can be derived in a similar manner and 
is written as follows: 

where 2 is the ring spacing and the subscript r is used to denote ring properties. 

Potential energy of applied loads.- The only applied loads to be considered in this 
analysis a r e  an external pressure p and an externally applied load resultant zx 
(positive in compression). The potential energy associated with these loads is 

2 ~ R 1  2aR1- a 
nL = Jo soaPW dx dY + lo Nx(k - ew,x)lo dY (8) 

The quantity e is the distance from the middle surface of the isotropic shell (z = 0) to 
the line on which Nx acts. 

Potential energy of inertia loading.- If the stiffened shell is undergoing simple har
monic motion of circular frequency w (inplane inertia neglected), and i f  u, v, and w 
a r e  amplitudes of such motion, the potential energy of inertia loading at maximum deflec
tion is 

2aR1 2 2dx dy (9)II, = - a lo Joa M w  w 

AS
- + p  
r Z  
- is the smeared-out mass per unit of surface area of the
where M =psht  + p  

s d
stiffened shell. The quantities psh, ps, and pr a re  the mass  densities of the shell, 
x-direction stiffeners, and y-direction stiffeners, respectively. 

Nonlinear Equilibrium Equations and Boundary Conditions 

The total potential energy IIT is the sum of the energies given by equations (3), 

(61, (71, (81,and (9): 
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IIT = IIsh + IIs + IIr + IIL + IIw (10) 
Equation (10) may be written in t e rms  of stress and moment resultants as 

where the s t r e s s  and moment resultants are defined as follows 

1 - P  

Et 

and 

I, = Io, - .:As 

I, = Io, - zrAr-2 
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The stress resultants Nx and Ny are positive in tension. The nonlinear equilibrium 
equations and boundary conditions are obtained from equation (11)by application of the 
principle of minimum potential energy (HI  = 0) and the fundamental lemma of the calculus 
of variations. The equations so obtained are 

Nx,x + Nxy,y = 0 1 
Ny,y + Nxy,x = 0 

- N ~ w , ~ ~- N X W , ~  - 2Nqw,xy - MW2w + p = 0J 
A set of boundary conditions to be satisfied at each end of the shell (x = 0,a) are 

The natural boundary conditions a r e  given by the expressions in equations (14a), (15a), 
(lsa), and (17a) and the geometric boundary conditions a r e  given by equations (14b), (15b), 
(16b), and (17b). The condition in equation (14a) requires that a shear resultant comparable 
to the Kirchhoff shear vanish and hence is a f reeedge  boundary condition. The three 
natural boundary conditions in equations (15a), (lsa),and (17a) correspond to conditions 
in which the edge moment resultant, the extensional s t r e s s  resultant, and the shear s t r e s s  
resultant, respectively, vanish. 

Homogeneous Equations Governing a Prestressed Vibrating Shell 

In this section, the nonlinear equilibrium equations (eqs. (13)) a r e  used to obtain 
linear equations which govern the small-amplitude vibration of a prestressed eccentrically 
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stiffened shallow shell of double curvature. The deformations u, v, and w associated 
with the vibration of a prestressed shell are divided into two par ts  as follows: 

The first part, denoted by the subscript A, is assumed to be an axisymmetric static pre
s t r e s s  deformation which occurs prior to the excitation of one of the natural frequencies. 
The second part, denoted by the subscript B, is a small additional deformation which 
occurs as a result of the excitation. Since equations (13) a r e  equilibrium equations for 
the system, the displacements denoted by subscript A as well as the sum of the two dis
placements denoted by subscripts A and B must satisfy these equations. After sub
stitution of the axisymmetric (subscript A) displacements, equations (13) become 

where now 

A set  of appropriate boundary conditions is found from equations (14) to (17) to be 

M + N,AWA,~ = 0 or WA= 

-
MA + Nxe = 0 or  w ~ = 0, ~ 

-
NxA+Nx=O or  u A = O  

= O  or v A = O
NxyA 
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A solution to equations (19) satisfying the conditions (21) completely describes the pre
s t ressed state. 

The equilibrium equations governing the additional deformations (subscript B) a r e  
obtained by substituting equations (18) into equations (13). If only linear t e rms  in  the 
additional deformations are retained and equations (19) are considered, equations (13) 
become 

+ N  = o
NxB,x WBYY 

NyB,y + NxyB,x= I 

and the boundary conditions become 

= O  or  v g = O  J" 
where 
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Gt3 GrJr 
M y ~ B= -(T+ F)B,xy 

The homogeneous equations (22) and the homogeneous boundary conditions (23) represent 
an eigenvalue problem which governs the natural frequencies of a prestressed eccentri
cally stiffened shell of double curvature. The coefficients in the equations are determined 
by considering solutions to the axisymmetric pres t ress  problem described by equa
tions (19) and the associated boundary conditions (eqs. (21). 

Solution for Prestressed Vibrating Shell 

Equations (22) have variable coefficients and would be quite difficult to solve in  
most instances. If, however, an assumption analogous to that made in classical buckling 
theory is made (i.e., that the lateral  prestress  deformation wA is constant prior to the 
excitation), the solution is greatly simplified. The implications of this assumption are 
given in  reference 6, and the exact solution to equations (19) and (20) is presented in 
appendix B. 

For wA constant and no applied shear, the prestress  equations a r e  

NxA = Constant 

NxyA = Constant = 0 

N N*- x A + - @ + p = oJR2 R1 
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From the boundary conditions (eqs. 21)) 
-

N f i  = -Nx 

Substituting equation (26) into the third of equations (25) yields 

NYA = -(pR1 r Exv) 

where v = -R1 is a curvature parameter.
R2 

Also for wA constant, equations (22) become 

NyB,y + NxyB,x= 

- N x ~ W ~ , x x  - M U  2w B = O- NYA w~ , y y  J 
where now 

NxyB = GtPB,y + V B , ~ )  (294 
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Gt3 GrJr 
MyxB = -(T-+ T ) w B , x y  

If the origin of the coordinate system is taken at one edge of the shell, the simple-
support boundary conditions to be satisfied are 

WB(0,y) = MxB(O,y) = VB(O,y) = NxB(O,y) 
(30) 

WB(a,y) = MxB(a,y) = VB(a,y) = NxB(a,y) = 

Expressions for the displacements 
ditions are given as 

UB 

vB 

wB 

uB, vB, and wB which satisfy these boundary con-

= u cos -a 

= v sin EE sin -a 

-
= w sin -a 

where m is the number of axial half waves and n is the number of circumferential 
full waves. After substitution of equations (31) into equations (28) and nondimensionaliza
tion, the following equation is obtained: 

-_  
0 


= 0 (32) 

0 


-_ 
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where 

D$(I - NyAn2(1 - p2) NxA$(l - p2)
A11 = -

EtR: Et Et 

2 2-- R(l - p2) - s(1- p2)v2 + 
Mw R1(l - p2) 

Et 

and the following nondimensional parameters have been defined: 

For a nontrivial solution to exist, the determinant of the coefficients of u, ?, and W 
must equal zero. After some manipulation, the nondimensional characteristic equation 
becomes 
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A = (62 + 1)2+ (E + !)(l + p)2p2 + (1 - p2)[! + + 2p2--RS(1 + p,] (344 

and the nondimensional parameter Z2 = - p2) has been defined. 
RTt2 

Equation (33) is a closed-form expression which gives the natural frequencies for  a 
prestressed eccentrically stiffened shell of double curvature. If the natural frequency 
o is set equal to zero in equation (33), a stability equation results which may be mini
mized to obtain buckling loads o r  buckling coefficients for a variety of loadings. 

In equation (33), the effect of eccentric stiffening is reflected by the te rms  con
taining the quantities e ,  and es. These quantities a r e  positive for stiffening attached 
to the external surface of the shell and negative for stiffening attached to the internal sur
face. The term (p2 - p) in  equation (34b) and the te rm (1 - ,up2) in  equation (34c) may 
also change sign, depending upon the shell geometry and its deflected shape. It should 
also be noted that every te rm that is first degree in e ,  or  e,  is modified by the term 
(1 * vp2), an indication that the type and magnitude of the shell curvature can greatly 
influence the effects exhibited by eccentric stiffening. 

RESULTS AND DISCUSSION 

The results presented include the vibration of shells in the absence of prestress,  
the buckling of shells in  axial compression, and the buckling of shells under a hydro-

PR1static pressure loading with Gx = -2 .  The prestress  load resultants for axial compres
sion are: 

and the prestress  load resultants for hydrostatic pressure are:  

R1NxA = -p 2 
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The following characteristic equations for each of these cases are found from equa
tion (33) by using equations (35)'and (36): 

2 4Mo a r (37)Vibration (no prestress): -= 
r4D 

-
Buckling (axial compression): Nxa2 r 

ET== 

Buckling (hydrostatic pressure) : (39) 

Numerical results obtained from these equations are discussed in the following sections. 

Vibration 

All the vibration results presented for shells of double curvature were obtained 
from equation (37) for a shell whose stiffener configuration is shown in figure 3. The 
natural frequencies in the absence of prestress  for a stringer-stiffened shell of positive 
Gaussian curvature are shown in figure 4. The natural frequencies for external stiff
ening are in general higher than those for internal stiffening, the difference being about 
35 percent for m = 2 and n = 8. A crossover does occur at low values of n due to 
the fact that the term (p2 - p )  has changed sign in equation (34b). The corresponding 
frequencies for a cylinder (Y = 0) are shown in figure 1of reference 7. The shell of 
positive Gaussian curvature is stiffer and as a result, it exhibits higher frequencies than 
the corresponding cylinder. 

Figure 5 shows the natural frequencies in the absence of prestress  for a stringer 
stiffened shell of negative Gaussian curvature (v = -0.25). The curves for external and 
internal stiffeners cross  twice for each m. The first crossing occurs when the term 
(p2 - p )  changes sign, whereas the second crossing occurs when the term (1 - vp2) 
changes sign. This trend makes it difficult to determine which type of stiffening yields 
the highest frequency for a given m and n. The figure does illustrate, however, that 
stiffening eccentricities can significantly alter the natural frequencies of a stiffened shell 
of this type. External stiffening yields a natural frequency that is approximately 
50 percent higher than that for internal stiffening for m = 2 and n = 4, and internal 
stiffening gives approximately a 50-percent higher frequency at m = 2 and n = 8. The 
analysis of the shell of negative Gaussian curvature is thus more complicated than that of 
either the corresponding shell of positive Gaussian curvature or the cylinder (ref. 7). 
It is necessary to note that the results depend on the shell geometry since p is a 
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function of the shell length and radius as well as mode shape and they also depend on the 
ratio of principal curvatures. The crossings in  the figure can always be predicted, how
ever, by setting the t e rms  (p2 - p) and (1 - vp2) equal to zero. 

Figures 6 and 7 show the natural frequencies with no pres t ress  of ring stiffened 
shells with v = 0.25 and v = -0.25, respectively. As in the case of ring stiffened 
cylinders, the shells of double curvature considered herein exhibit relatively small  eccen
tricity effects when stiffened by rings alone, the maximum eccentricity effect being about 
10 percent. The points where the curves c ross  in  the figure can be predicted by consid
ering the te rms  (1 - pp2) for figure 6 and (1 - pp2) and (1 - vp2) for  figure 7. 

Buckling 

The buckling results obtained from the present analysis a r e  for a shell with a stiff
ener configuration like that shown in figure 3 loaded either by end loads or  hydrostatic 
pressure.  Tables I and I1 give the pressures  and the compressive end loads for  buckling 
of shells of positive (v = 0.25) and negative (v = -0.25) Gaussian curvatures, respectively. 
The first column of results in the tables gives the critical axial load resultants for a shell 
loaded in axial compression, and the second column of results gives the critical values of 
pressure for a shell loaded by hydrostatic pressure. The effects of eccentric stiffening 
are evident from a consideration of the tables; a few important facts should be mentioned, 
however. The eccentricity effects are not as large for the shell loaded in axial compres
sion as they a re  for the corresponding cylinder (ref. 6). It is also evident that stringers 
are more effective stiffeners than rings under axial compressive loadings for the shell of 
positive Gaussian curvature but rings a r e  more effective stiffeners than stringers under 
this type of loading for  a shell of negative Gaussian curvature. Rings a r e  more effective 
than stringers under hydrostatic pressure loading for  both types of shells, as is true for 
cylinders (ref. 6). 

The data of table I show that external stringers are more effective (approximately 
20 percent) than internal stringers under axial compressive loading for a shell of positive 
Gaussian curvature with no ring stiffeners. However, internal stringers are more effec
tive under this loading for a shell of negative Gaussian curvature, as shown by the data 
of table II. 

Examination of equations (35) and (33) shows that a shell of positive Gaussian curva
ture can buckle with an applied tensile edge load because of the buildup of compressive 
hoop stresses.  Table III gives the tensile buckling loads for such a shell (v = 0.25). It 
is evident from the table that rings provide the most effective type of stiffening for this 
case with internal rings giving a 28-percent higher buckling load than external rings. 
Combining both types of stiffening does not greatly increase the buckling load and, in 
fact, table I11 shows that external rings and internal stringers give a lower buckling load 
than internal rings alone. 
18 



' CONCLUDING REMARKS 

An analysis is made of the buckling and vibration of eccentrically stiffened shallow 
shells of double curvature. An expression is presented relating the natural frequencies to 
pres t ress  terms and to a variety of nondimensional shell and stiffening parameters. 
This expression may be used to determine the vibration and buckling characteristics of 
particular shell- stiffener configurations or to perform parametric studies to optimize 
the stiffening configuration for a particular application. 

All the results presented herein illustrate the complicated behavior of eccentri
cally stiffened shells. It is impossible to make generalizations regarding the dynamic or 
buckling behavior of such shells. The eccentricity effects depend on the type of loading, 
the configuration, and the physical properties of both the shell and the stiffening. As a 
result, each particular shell- stiff ening configuration must be thoroughly analyzed to 
determine these effects. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., August 30, 1966, 
124- 11-06- 04-23. 
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APPENDIX A 

CONVERSION OF U.S. CUSTOMARY UNITS TO SI UNITS 

The International System of Units (SI) was adopted by the Eleventh General 
Conference on Weights and Measures held in  Paris, October 1960 in  Resolution No. 12 
(ref. 9). Conversion factors for the units used herein are given in  the following table: 

Physical quantity U.S. Customary Conversion 
SI unitunit factor 

~ (*I 
Force lbf 4.448 newtons (N) 

Frequency CPS 1 hertz (Hz) 

Length in. 0.0254 meters (m) 

Stress  and pressure lbf/in2 6.895 X lo3 newtons/metera (N/m2) 

Unit 1oading lbf/in. 175.1 newtons/meter (N/m) -1


*Multiply value given in U.S. Customary Unit by conversion factor to obtain 
equivalent value in SI Unit. 

Prefixes to indicate multiple of units a r e  as follows: 

Mu1tiple 

centi (c) 

20 
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APPENDM B 

PRESTRESS DEFORMATIONS 

The solutions presented in this report  are based on the assumption of constant lat
eral displacement wA prior to buckling. The implications of this assumption for a 
cylindrical shell are discussed in  reference 6. The discussion in  reference 6 applies 
directly to the shells of double curvature except that the added curvature can possibly 
increase the importance of considering exact prestress  deformations rather than the 
simple assumption of constant lateral displacement. Consideration of exact prestress  
deformations would have necessitated an approximate solution to equations (22) for 
buckling and vibrating. An exact pres t ress  solution can be obtained, however, and is 
presented as follows. 

The equations which govern axisymmetric prestress  deformations a r e  

NxA,x = O 

-M NxA NYA NxAWA,XX + p = o
fi,XX R2 R1 

where 

-
Equation (Bl) implies that NxA = Constant. This constant is denoted by -Nx, where-
N, is an applied compressive end load. In addition, equation (B2) implies that 
NxyA = Constant = 0 with no applied shear load. For axisymmetric deformations, 

=--WA thus equation (B4) can be solved for exA as follows:E YA ~ 1 '  
W

ESAszs -slLA-N,
d A,% 1 - p2 R1 

037)E A  = 
Et +-EsAs 

1 - p2 d 
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APPENDIX B 

Substitution of equation (B7) into equations (B4) to (B6), and subsequent substitution 
of equations (B4) to (B6) into equation (B3) yields 

where 

A solution to equation (B8) is of the following form: 

where the K's are constants to be determined from the boundary conditions and the 
A ' s  a r e  defined as follows: 

A 1  = 
2 

(BlOa) 

(Blob) 

'"& 4 ( 2 ).-

A 3 = - -
2 (Blac)  
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APPENDIX B 


(BlOd) 

Equation (B9)can be used in conjunction with equations (22) to determine the effect 
of prestress  deformations on the buckling and vibrating characteristics of doubly curved 
shallow shells. 
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TABLE 1.- BUCKLING RESULTS FOR SHELL OF POSITIVE GAUSSIAN CURVATURE 
-

Shell properties 
v = 0.25 
2 = d = 1.0 in. (2.54 cm) 
E = E, = E, = 10.5 X IO6 psi (72.4 
a = 23.75 in. (60.3 cm) 
R1 = 9.55 in. (24.3 cm) 
1-1 = 0.3-

Configuration 

No stringers 
Rings external 

No stringers 
Rings internal 

No rings 
Stringers external 

No rings 
Stringers internal 

Rings external 
Stringers internal 

Rings external 
Stringers external 

Rings internal 
Stringers internal 

Rings internal 
Stringers external 

Axial co )r_essive 
l o a  NX 

lbf/in. MN/m 

744 0.130 

717 0.126 

7,913 1.385 

6,664 1.166 

10,144 1.776 

11,778 2.063 

7,928 1.389 

9,183 1.607 

Hydrostatic pressure 
load, p 

MN/m2 
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TABLE 11.- BUCKLING RESULTS FOR SHELL OF NEGATIVE GAUSSIAN CURVATURE 
- -

Shell properties 
v = -0.25 
2 = d = 1.0 in. (2.54 cm) 
E = Es = E, = 10.5 X lo6 cm (72.4 GN/m2) 
a = 23.75 in. (60.3 cm) 
R1 = 9.55 in. (24.3 cm) 
,U = 0.3-

Configuration 

No stringers 

No stringers 

Rings internal 


No rings 

Stringers external 


No rings 


Rings external 

Stringers internal 


Rings external 


Rings internal 

Stringers external 


Axial compressive 
load, flX 

~~ 

lbf/in. MN/m 

744 0.130 

697 0.122 
-

282 0.049 

340 0.060 

2,040 0.354 

1,9 13 0.335 
. - - _  

1,770 0.310 
.. . 

1,842 0.322 

Hydrostatic pressure
load, p 

psi MN/m2 

69 0.476 
_ _  

63 0.434 

14.5 0.100 

18.5 0.128 

78 0.538 
-

70 0.483 

84 0.579 

68 0.469 
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TABLE 111.- BUCKLING RESULTS FOR SHELL OF POSITIVE GAUSSIAN CURVATURE 


LOADED IN TENSION 
-

Shell properties 
v = 0.25 
Z = d = 1.0 in. (2.54 cm) 
E = E, = E, = 10.5 X lo6 cm (72.4 GN/m 
a = 23.75 in. (60.3 cm) 
R1 = 9.55 in. (24.3 cm)

Lp = 0.3 

Configuration 

._ 

No stringers 
Rings external 

-

No stringers 
Rings internal 

No rings 
Stringers external 

Axial tensile load,-
NX 

lbf/in. I MN/m 

13,441 2.354 

17,200 3.010 

833 1 0.146 
-~~~ ~~ 

No rings 
Stringers internal 

-. 

Rings external 
Stringers internal 

Rings external 
Stringers external 

Rings internal 
Stringers internal 

_ _  

Rings internal 
Stringers external 

0.132 

16,617 2.9 10 

17,788 3.115 

19,408 3.400 

20,396 3.570 
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Figure 1.- Geometry of eccentrically stiffened cylinder. 

X 



Figure 2.- Geometry of shells of double curvature. 



(7.67) 
0.302 (2.44) 

(0.71) 
0.028 

Stringers 

Rings 

Figure 3.- Stiffening configuration. All  dimensions are in  inches (millimeters). 
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Figure 4.-

PROPIBTIES 


d = 1.0 in.(2.54 an) 


E = E = 10.5 x 106 psi (72.4GN/~*) 


a = 23.75 in. (60.3 cm) 


R1 = 9.55 in.(24.3 an) 


= 0 .3  

Stiffener configuration shown in figure 3 

-External 
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4 6 a 10 12 14 
n 

Natural frequencies of stringer-stiffened shell of positive Gaussian curvature (u = 0.25). 
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PROPERTIES 

d = 1.0 in. (2.54 cm) 

E = Es = 10.5 x 106 
psi  (72.4 GN/m 

2) 


a = 23.75 in. (60.3 cm) 


R1 = 9.55 in. (24.3 cm) 


p = 0 . 3  


Stiffener configuration show in figure 3 


Figure 5.- Natural frequencies of stringer-stiffened shell of negative Gaussian curvature (u = -0.25). 
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Figure 6.- Natural frequencies of ring-stiffened shell of positive Gaussian curvature (v = 0.251. 

33 




--- 

I 

2000 

1800 


1600 


1400 


1200 


1000 


f ,cps .  

(Hz) 
800 

600 

400 

200 

0 


PROPERTIES 


2 = 1.0 in.(2.54 cm) 
6

E = Er = 10.5 X 10 p s i  (72.4 GN/m2) 

a = 23.75 in .  (60.3 cm) 

R1 = 9.55 i n .  (24.3 cm) 

p = 0.3 

Stiffener configuration shown i n  figure 3 
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Figure 7.- Natural frequencies of ring-stiffened shell of negative Gaussian curvature (v = -0.25). 
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